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Abstract. We argue that different bifurcation pictures of t ( Q )  curves can be regarded as 
a manifestation of the different ways in which the total energy t ( A )  and the total external 
charge Q(A) vary with their parameter A near their respective minimum values. From this 
point of view we rederive, in a simple way, certain well known results. 

The bifurcation phenomenon, a nonlinear effect, occurs in many areas of physics and 
it certainly plays a role in particle physics [l] .  For the classical Yang-Mills ( Y M )  field 
equations with an external source, the term bifurcation normally refers to one of the 
following two cases: 

( a )  the bifurcation of the gauge field configuration as some parameter, say A, is 
varied in the equations; 

( b )  the branching of the total energy E ( A )  of the gauge fields and external matter 
sources as the total external charge Q(A) is varied. 

These two cases are related. Bifurcation as in case ( a )  above, at the critical value 
A, of the parameter, requires the existence of a zero-eigenvalue mode in the stak,ility 
(fluctuation) equations for the gauge fields [2]. It is then argued that 5 and Q may 
possess a common minimum at A = A,. In fact this is what was done by Jackiw and 
Rossi [2] who chose the parameter E ,  which is the expansion parameter around the 
bifurcation point, to be positive. The existence of a common local minimum of 6 and 
Q does imply the bifurcation of ( ( Q ) ,  and also of the gauge field with a suitably 
redefined parameter. In this letter we point out that the various bifurcation pictures 
discussed in the literature can simply be understood by examining their behaviour 
near the bifurcation point and that they have common characteristics. Finally we 
rederive in a simple way some standard known results by using small-parameter 
expansions about the bifurcation point. 

In the literature, several different bifurcation pictures of E (  Q )  have been exhibited. 
(i) When the external charge density is specified in the radial gauge frame with 

the Kronecker index equal to one, it was first shown by Jackiw et al [3] that when the 
strength Q of a spherical shell source exceeds a non-zero critical value, the type-I1 
solutions bifurcate into two branches with different total energy. See figure 1 of [3]. 

(ii) For the external source in an Abelian gauge frame with zero Kronecker index, 
the Abelian Coulomb solution becomes unstable at the bifurcation point from which 
a stable magnetic multipole solution emanates. See figure 2 of [4]. The bifurcation 
picture of [5] also belongs to this type. 
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(iii) For the type-I1 solutions discussed in [ 6 ] ,  if the parameters are suitably 
constrained, ( and Q do have their respective minima at the same critical value of the 
parameter. See figure 2 of [7]. Here one has only one branch in the [ against Q diagram 
since the gauge field is on the verge of becoming imaginary at the critical parametric 
value. 

(iv) Recently it was found [8] that one can in fact construct infinite pairs of 
bifurcating branches emanating from a bifurcation point and there can be an infinite 
number of bifurcation points. See figure 1 of [8]. 

These different pictures of bifurcation can be easily understood if we direct our 
attention to the behaviour of ( and Q when the parameter A is varied. (Note that A 
can be a set of parameters.) The common important feature of the bifurcation pictures 
[3-81 is the cusp-like behaviour in the (( Q )  curve. The cusp arises when d(/dQ does 
not exist at A = A, which in turn means the first derivatives of ((A,) and Q(A,) with 
respect to A vanish. Thus it is the different ways in which ( ( A )  and Q(A) change with 
A in the vicinity of A, that gives rise to the different bifurcation pictures of the ( against 
Q plot mentioned above. As long as either ( ( A )  or Q(A) are not symmetrical with 
respect to their respective minima?, i.e. [ (A , )  # ( ( A 2 )  or Q ( A , )  # Q(A,) where = 
A , * A A ,  for any small positive increment AA, then as A is varied throughout its allowed 
range, one will obtain the two branches ending with a cusp, the same as that given by 
[3], i.e. the bifurcation picture (i). If the gauge field configuration can be labelled by 
several parameters, then different constraints may be set up between the parameters 
to yield different sets of t ( A )  and Q(A) so that one can engineer as many pairs of 
bifurcating branches as one wishes, thus arriving at the picture (iv) mentioned above. 
However, if both ( ( A )  and Q(A) are symmetrical with respect to their respective 
minima, then the two branches in picture (i)  will coalesce into one branch. Indeed 
picture (ii) can be obtained from picture (iv) in this way by demanding ( ( A , )  = ( (A2)  
and Q ( A , )  = Q(A2) for the respective two pairs in (iv). In 141 the parameter used is c 
and ((-c) = ((c), Q(-c) = Q ( c )  for a non-zero c. Of course the bifurcation picture of 
the Abelian Coulomb solutions has more meaning than merely a degenerate case of 
(iv) because it occurs naturally (no artificial constraints on the parameters) and the 
magnetic multipole solution co-exists with the Coulomb solution for the same charge 
density, not just same total charge. The bifurcation picture (iii) arises because the 
parameter A is only allowed to vary from A greater than A,, no solution exists for 
A < A,. Consequently picture (iii) is not a degenerate case of (i). 

In view of the above consideration, we may in principle employ a complicated 
enough charge density distribution and obtain solutions to produce ( ( A )  and Q(A) 
with as many common local minima or maxima as we wish which then lead to the [ 
against Q diagram with the corresponding number of cusps. This is sketched in figures 
1 and 2. In short, provided [ ( A )  and Q ( A )  are at least quadratic in their argument A, 
and A denotes a set of parameters, one can always manufacture a ((Q) curve with 
two branches terminating at a cusp. 

One useful outcome of the above viewpoint regarding the bifurcation of the [( Q) 
diagram is that some standard known results can be derived in a simple manner as 
follows. Expanding Q(A) about A, yields 

t We exclude the trivial case: t ( A )  and Q ( A )  have the same shapes, leading to a linear relation between them. 
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Figure 1. Variations of the total energy [ ( A )  and total charge Q(A) with the parameter A. 
Common local minima occur at A , ,  A 3  and A, respectively whilst a common local maximum 
is at A,.  Note that there is no common maximum between A, and A,. 

Q ( A 3 1  Q ( A 4 I  Q ( A , )  Q l A d  Q 

Figure 2. A sketch of the t(Q) curve corresponding to the t ( A )  and Q ( A )  as given by 
figure 1. 

Equation ( 1 )  shows that for AA small, A ,  and A 2  give the same total charge and they 
correspond to the two points on the upper and lower branches of the e( Q )  curve. Hence, 

A ~ = I c ~ ' ( A I ) - ~ ( A ~ ) I  =21&(AA)31 
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Furthermore, if we let a ( A )  represent a typical gauge field (we have suppressed various 
indices), then again a Taylor expansion around the bifurcation point gives 

a ( A )  = a,+a,Ah a== a ( & )  

Therefore 

Q>Q,. ( 5 )  
a1 h a  = a ( A  ) - a (  A,) = * - ( Q  - Qc)’’* 

Q;’2 

Note that in the above analysis it is essential that Q2 # 0 and t3 # 0. Equation (3) shows 
that the energy bifurcates as (0 - Qc)3’2 from the common minimum of 6 and Q. 
Equation (4) indicates that the mean energy of the two branches rises linearly with 
( Q  - QJ near the bifurcation point. Equation ( 5 )  implies that if we use p = ( Q  - Q,) 
as a new parameter, then the gauge fields bifurcate from p = 0. These results were first 
obtained by Jackiw and Rossi [ 2 ]  using a much more involved analysis. The novel 
feature of our approach is that it demonstrates that the results are a simple mathematical 
consequence of two functions sharing a common local extremum point. In addition 
the present derivation provides computable coefficients in the expressions (3)-( 5 )  which 
we have verified for a known analytic solution. We note that these results (3)-(5) are 
employed by the authors of [9] to discuss stability problems. 

An important point to bear in mind is that although we have shown that bifurcation 
in [ ( Q )  (from a common local minimum of [ and Q )  also results in bifurcation of 
the fields, the later bifurcation is now described by the parameter p and not A which 
is the original parameter in the equations. In fact the two corresponding points on the 
bifurcating branches correspond to two different values of A and therefore A is not 
the bifurcation parameter in the present case. Finally the results (3), (4) and ( 5 )  are 
not applicable between the Coulomb solutions and magnetic multipole solutions, 
namely for the bifurcation picture (ii), since each family of these solutions is a 
degenerate case of the picture (i). 
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